Journal of Organometallic Chemistry, 157 (1978) C40–C42 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

ISOMERISATION IN THE CHEMISTRY OF PLATINACYCLOBUTANE COMPLEXES

RAZAK J. AL-ESSA, RICHARD J. PUDDEPHATT*, CHARLES F.H. TIPPER and PETER J. THOMPSON

Donnan Laboratories, The University of Liverpool, Liverpool L69 3BX (Great Britain) (Received June 21st, 1978)

Summary

The platinacyclobutane complexes [PtCl₂L₂(C₃H₅Me)], L = pyridine, CD₃CN, or tetrahydrofuran, exist as mixtures of isomers containing PtCH₂CHMeCH₂ or PtCHMeCH₂CH₂ groups in rapid equilibrium. Decomposition occurs in some cases to give [PtCl₂L(CH₃CH₂CH=CH₂)]. Stereospecific sk<u>eletal isomerisation</u> also occurs in metallocyclobutanes containing the groups PtCHRCHRCH₂ \Rightarrow PtCHRCH₂CHR but, when R = aryl further decomposition gives η -allylplatinum complexes.

Reaction of $[Pt_2Cl_4(C_2H_4)_2]$ with methylcyclopropane gives $\{PtCl_2(C_3H_5Me)\}_4$ which with various ligands, L, gives a mixture of isomeric complexes I and II, R' = Me, characterised by NMR spectroscopy (Table 1).

The ratio of I/II is strongly dependent on the ligand, L, being 1/5.7, 1/4.0 and 1/2.4 when L = pyridine tetrahydrofuran- d_8 or CD₃CN respectively. Dissolution of the tetramer {PtCl₂(C₃H₅)}₄ in pyridine- d_5 gave a product mixture of I and II in the ratio 1/3.5. These results show that I and II are in rapid equilibrium. The isomerisation appears to be retarded by excess ligand but is considerably faster than when R' = Ph [1]. Further, it seems that the position of equilibrium is in-

*Present address: Department of Chemistry, University of Western Ontario, London (Canada).

IH AND) ¹³ C NMR SPE	CTRA OF PI	LATINACYCI	OBUTAN	ES, I-IV									
Complex				¹ H NMR	a			¹³ C NMR	q					
Type ^c	Ŀ	R¹	R²	δ(R ¹) (ppm)	J(PtH) (Hz)	6 (R ²) (ррт)	J(PtH) (Hz)	δ(C ¹) (ppm)	J(PtC ¹) (Hz)	δ(C ²) (ppm)	J(PtC ²) (Hz)	δ (C ³) (ppm)	J (PtC ³) (Hz)	
1	C,H,N	Me		0,84	22			5.65	1	45.2		-8.0		
11	C,HSN	Me	1	1,35	2	1	I	1.0	344	42.6	98	; 1	i	
I	CD, CN	Me	1	0.70	36	1	ł				1			
II	CD, CN	Me	1	0.93	4	ł	1							
11	C,H,N	Bu	ł	đ				-5.2	344	43.4	95			
III	C,H _S N	Me	Me	1.02	23	1.40	7				•			
III	C, H _s N	Ph	Me			0.96	ŝ	16,9	333	41.2	103	-0.2	363.5	
III	C,H,N	Me	Ъћ	0,61	24	q.		10.6	360	67.5	100	-2,9	370	
III	t-BuC ₅ H ₄ N	ЧА	Ph	י ש		a.		15,1	343	50.6	105	-1.8	377	
١٧	t-BuC ₅ H ₄ N	Ъh	Ph	ъ.		q.		6.05	340	41.2	130			
III	t-BuC ₅ H ₄ N	4-MeC ₆ H ₄	4-MeC,H4	ч.		e.		15.7	341	50.5	105	-1.6	383	
١٧	t-BuC ₅ H ₄ N	4-MeC 6H4	4-MeC ₆ H ₄	ø		q		6.3	338	14.6	125			
					~									

TABLE 1

 a Ref. ext. TMS. b Ref. int. TMS, c For nomenclature see text. d Complex.

C41

fluenced largely by steric effects. Thus when R' = Bu or hexyl [2] none of isomer I can be detected when L = pyridine, and when R' = Me the ratio I/II decreases with increasing bulk of L.

When $L = CD_3CN$, R' = Me, the equilibrium mixture of I and II decomposes to give $[PtCl_2(CD_3CN)(CH_3CH_2CH=CH_2)]$ (V), as the only product. This is the product expected by decomposition of isomer I only [3], and its formation is thus explained by the reaction of eq. 1. An analogous reaction occurs much more slowly when L = pyridine, and a similar mechanism is invoked for this and related reactions [4].

$$\prod \stackrel{\text{fast}}{\longleftarrow} I \xrightarrow[-CD_3CN]{\text{slow}} V \tag{1}$$

The greater reactivity of I is probably due to greater steric effects than in II. Further evidence that steric effects can influence the reactivity of platinacyclobutanes comes from study of complexes derived from *trans*-1,2-disubstituted cyclopropanes, $C_3H_4R^1R^2$. Thus, when $R^1, R^2 = Me, Ph$ or $4-MeC_6H_4$, complexes III and/or IV are obtained (Table 1) but, when R^1 , $R^2 = 2-MeOC_6H_4$ or 2,5-(MeO)₂C₆H₃, η -allylplatinum complexes are formed instead. When decomposition of platinacyclobutanes occurs it seems that alkyl substituents in the ring favour formation of alkene complexes and aryl substituents favour η -allyl complex formation.

When $R^1 = R^2 = 4$ -MeC₆H₄ and L = 4-t-BuC₅H₄N, isomerisation IV \Rightarrow III occurs readily without formation of isomeric complexes with mutually *cis*-tolyl groups; thus showing that *cis*-*trans* isomerism does not accompany skeletal isomerisation.

In summary, this work shows that skeletal isomerisation of platinacyclobutane complexes is a general reaction, that it occurs in a stereospecific manner and that the reactions are important in understanding the general chemistry of platinacyclobutanes. The relevance of these reactions to the mechanism of olefin meta-thesis has been discussed [1].

References

- 1 R.J. Puddephatt, M.A. Quyser and C.F.H. Tipper, J. Chem. Soc. Chem. Commun., (1976) 626.
- 2 F.J. McQuillin and K.G. Powell, J. Chem. Soc. Dalton Trans., (1972) 2123.
- 3 P.W. Hall, R.J. Puddephatt, K.R. Seddon and C.F.H. Tipper, J. Organometal. Chem., 81 (1974) 423.
- 4 B.M. Cushman and D.B. Brown, J. Organometal. Chem., 152 (1978) C42.